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A Note on the Artuso-Aurell-Cvitanovic 
Approach to the Feigenbaum Tangent Operator 
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In this note we explain the rigorous mathematical arguments underlying some 
recent work of Artuso, Aurell and Cvitanovic on the Feigenbaum tangent 
operator. In particular, we attempt to clarify the advantages of introducing zeta 
functions through the ideas of Ruelle and Grothendieck. 
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I N T R O D U C T I O N  

The purpose of this note is to clarify the rigorous mathematical arguments 
underlying some recent work of Artuso et  al. (1) These authors were concer- 
ned with those parts of the well-known Feigenbaum conjectures for the 
period-doubling phenomena of unimodular maps which dealt with the 
spectrum of the derivative of the Feigenbaum operator. 

It had been observed by various authors that this linear operator took 
the form of a very special kind of Ruelle-type transfer operator for a 
"cookie cutter." 

These special features were used by Artuso e t a l .  to develop an 
approach (based on zeta functions and periodic points for the "cookie 
cutter") to understanding the spectrum. 

In this note we shall at tempt to clarify these ideas and, in particular, 
demonstrate that this yields an alternative way to show the existence of a 
maximal positive eigenvalue and hyperbolicity of the operator, and an 
efficient and rigorous method for calculating the value of the maximal 
eigenvalue (given some information about  the general form of the Feigen- 
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baum "fixed point" function in the form of weights for a finite number of 
periodic points) of the associated "cookie cutter." 

We emphasize that we are not attempting to make a new conceptual 
contribution to the theory, merely reformulating the ideas of Artuso et al. 
in such a way as to demonstrate that their approach is intrinsically mathe- 
matically rigorous. 

1. COOKIE CUTTERS A N D  THEIR SPECTRA 

Consider the following construction: Let I =  [-a, b] denote a closed 
interval in the real line and let I1 = [a, a ' ]  and I2 = [b', b] be two sub- 
intervals with a < a' < b' < b. 

Let F / I i  ~ I, i = 1, 2, be two real analytic surjective expanding maps 
(with IIf;ll ~ > 1) and we write F: I1 w 12 ~ L 

The maps Fi have inverses f~: I--,I~, i =  1, 2, such that (Fig. 1): 

(i) f~, f2 are real analytic. 

(ii) fx, f2 are contractions (with 0 < [f/(z)l  < 1, i = 1, 2). 

(iii) f l ,  f2 are surjective. 

Since the maps fe ( i=  1, 2) are real analytic, they have complex analytic 
extensions to some open neighborhood I% U _  C (and we keep the same 
notation f i  for their extensions to U). Furthermore, by choosing U 
sufficiently small and using (ii), we see that: 

(iv) c l ( f iU)~_U, i= l ,  2. 

Z 

Fig. 1. A cookie cutter. 
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Let B denote the space of (complex) analytic functions h: U ~ C which 
have a continuous extension to cl(U). This is a Banach space with respect 
to the supremum norm 

H g ] ] ~ = s u p { l g ( z ) l ] z s U }  

Assume that w i : f i U ~  C, i =  1, 2, are analytic functions which have a 
continuous extension to cl(fiU). We shall also write w:fl U w f2 U-* C, 
where w I f~ U = w~, i = 1, 2. 

D e f i n i t i o n .  The transfer (or Ruelle) operator L : B ~ B  is a linear 
operator defined by 

( Lh )(z) = wl ( f  lz) " h ( f  l z) + w2(f2z)" h(f2z) 

The operator is clearly bounded and compact (seen with the aid of 
Montel's theorem). However, it is easy to show the stronger result that the 
operator takes the following explicit form: 

La m ina  1. We can write 

+cO -boo 

Lh(z)= y, vn(h) . ( f~z-a)n+ ~, u~(h) . ( f2z-b)  n 
n - - 0  n = 0  

where 

(i) z~ -~ ( f l z -a )  n, ( f 2 z - b )  n are complex functions and 

1 fr (wlh)(~) d~ (ii) h~-~v,(h)=~= i (~_f~z) ,+l  

1 fr (w2h)(~) d~ are linear functionals h~--~u,(h)=~ini ( ~ _ f 2 z ) , + ,  

and where F_~ U is a closed curve encircling c l ( f  1 U), cl(f2 U) (Fig. 2). 
[Of  course, these expansions are only valid within the radius of 

convergence of the series. Therefore they should be interpreted in the sense 
that we can choose appropriate points a and b and curve F, depending on 
the neighborhood of z. The proof of the expansion is very easy. Simply 
write (wih)(fiz), i =  1, 2, in terms of the Cauchy integral around F and 
then expand the integrand as a power series. In particular, L is a "nuclear" 
or "trace-class" operator in the sense of Grothendieck. (s)] 

Let {fli}+oo~=l denote the eigenvalues of the (compact) operator 
L: B ~ B, repeated according to multiplicity. 
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~L 

f 

Fig. 2. The analytic domains. 

D e f i n i t i o n .  We define the determinant to be the complex function 

- b o ~  

d(z)= l-[ 
i = 1  

z e C  

The relationship between the spectrum of L and the domain of d is 
given by the following: 

L a m i n a  2. (i) d(z) converges on a sufficiently small neighborhood 
Iz[ <~, ~>0 .  

(ii) d(z) extends as an entire function on C. 

(iii) The zeros for d(z) occur at z = 1/fli, i =  1, 2,.... 

(These results are well known from Grothendieck's work. (8~) 

We make some observations that will be useful later. We may expand 
d(z) for [z[ <~  by 

d(z) -- 1 + ~ a , z  n, where a n ~- 2 ~il "~176 ~in 
n = l  il < " "  <in 

The proof of Lemma 2(ii) is actually based on explicit  bounds on the 
coefficients a n in terms of bounds on IIL/I[, where L - Z  +~ L, represents - -  i = 0  

the presentation in Lemma 1. 
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Specifically, if we have [[Lkl[ ~< C. O k, k ~>0, then 

C k . o k ( k  - 1)/2 
lak[ ~< (1 - 0)(1-02) ... (1 - O k) - o(ckok2) (1.1) 

(see ref. 7 for details of this estimate). 
Here we can choose: 

(i) C=max{llWll]~,  IlWzll~}. 

(ii) 0 = max{(rl/R1) 1/2, (rz/R2)l/2}, where 

r l = s u p { l f l z - a l  l z~ U} 

r 2 = s u p { [ f j - b t  [z~ U} 

R1 = i n f { [ ~ - ~ l  ICsF} 

R2 I er} 

Eand in specific cases more intelligent (i.e., smaller) choices of 0 are 
possible]. 

For  an appropriate domain U and curve F we expect to make 
0 < 0 < 1. (N.B. We can replace a, b by other points in the intervals I 1 and 
/2 if need be.) 

The most familiar case of transfer operators is when wi > 0. In this 
context we have the following: 

Ruelle Operator Theorem. For w > 0 the transfer operators have 
a maximal (in modulus) simple positive eigenvalue,/~1 > 0. In particular, if 
w = 1~IF'l, then fll ~ 1.(12) 

Clearly, if w < 0 ,  then the transfer operator has a maximal (in 
modulus) simple negative eigenvalue. 

D e f i n i t i o n .  In the case where the weight functions wl, w2 have 
values on I1 w/2 with mixed signs we shall say the transfer operator has 
sinned 

E x a m p l e .  Consider linear contrations f l ( z )=c~(z -a ) ,  f2 (z )=  
f l ( z -  b), where 0 < [el, ]fl[ < 1 and let the weight functions take constant 
values wl ( z )=A  , w2(z)=B , where [A[, IBI >0.  

The domain U can be chosen to be a disc [zt ~< R, for sufficiently large 
R, and then we can take C=Max{[A[ ,  ]B[} and as R ~  +o% 0 2 can be 
taken arbitrarily close to 0 2 ---max{le[, I/~l }. 

The spectrum in this case can be explicitly computed as 
{Ae" + Bfl" l n >~O}. 
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The determinant becomes 

d(z )=  [J  [ 1 - z " ( A ~ n + B f l n ) ]  
n = 0  

Even in the relative simple case of this example there is discouragingly 
little evidence of a very general critereon for the existance of a positive 
maximal eigenvalue for the transfer operator. 

If ~ =/~ > 0 and A > tB[ > 0, then there exists a simple maximal eigen- 
value. However, A > [BI > 0  is no longer a sufficient condition if we take 
~ > 0 > / ~  with/~= -~ .  

Remark. It is natural to expect that for operators "sufficiently close" 
to those trivial operators in the example we shall have some information 
on the spectrum by analytic perturbation theory. One problem here is to 
quantly "sufficiently close." The real benefit of  introducing determinants d(z) 
is that we will eventually be able to have very accurate estimates on the 
coefficients a,, and so ultimately the eigenvalues fli. 

Since our principal motivation is the study of the specific case of the 
Feigenbaum tangent operator (to be described in the next section), this 
aspect is important. 

2. T H E  F E I G E N B A U M  T A N G E N T  M A P  

The well-known Feigenbaum "conjectures" have three parts: 

Part 1. There exists an analytic map g: [- - 1, 1 ] ~ ~ which is a fixed 
point for the map ~ defined by (qSh)(z)= ~hoh(z/~) [where we assume the 
normalization g(0) = 1, which specifies ~ = i/g(1 ) ]. 

Part 2. The tangent map Dg~b has a maximal positive eigenvalue 
5 > 0  (on a suitable Banach space). 

Part 3. Aside from the "trivial" eigenvalues ~, 1, l/a, 1/~2,..., the rest 
of the spectrum of Dgq5 is strictly within the unit disc. 

We refer to ref. 9 for a particularly clear and concise exposition. 
All parts have been rigorously proved by Lanford (1~ (through a com- 

putation-oriented approach). Subsequently, a more conceptual approach to 
the first part was developed by Epstein, (s) and Campanino et aL (3~ gave a 
proof of the second part by introducing an invariant cone (cf. also refs. 4 
and 6). 

Remarks. (a) Lanford's computational approach yields the numeri- 
cal values e = -2.50290... and 6 = 4.6692 .... 
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(b) The "trivial" eigenvalues ~, 1, 1/cq 1/~2,... correspond to eigen- 
functions z ~ z k. g'(z) - [g(z) ]  k, k >~ 0. 

(c) The even functions [i.e., h(x) such that h ( x ) = h ( - x ) ]  are 
invariant under Dgq~, and restricting the operator to this space only serves 
to eliminate spectra from within the set of trivial eigenvalues. For  example, 

corresponds to the eigenfunction z ~ g'(z) - 1, which is not an even func- 
tion [since z ~ g(z)  is even] and so e does not occur as an eigenvalue for 
Dg~/' acting on even functions. 

(d) The eigenvalue 1 does occur for Dgq5 acting on even functions, 
has eigenvector z ~-~ z g ' ( z ) -  g(z) and eigenprojection h ~-, C ( h ) =  
(~2  _ l )  h ( 0 )  - ~ h ( 1 )  e •. 

We refer to ref. 9 for more details and references to primary sources. 
To calculate the derivative DgqS, we need to consider the first-order 

term in t ~ qS[g + t], which gives (Dgq~) h(z) = ~h(g(z/e))  + eg ' (g(z /~)) .  
h(z/~). 

We shall restrict consideration to the case where h is an even function. 
We could write h(z) = k(z  2) for some k, but since g is even, it is convenient 
to write h ( z ) = k ( g - ~ ( z ) ) .  It then follows that we can rewrite the derivative 
as (Dgq~)h = (Lk)  o g, i.e., 

h(z)~---~k(z/c~)+c~g'(g(z/et)).k(g(z/cQ) for 1/c~<<,z<~l 

(cf. ref. 1 for details of the simple derivation. We learnt of this fact from 
Sullivan, (14) but we do not know who first introduced it). 

Thus, we see that Dg~b corresponds to a transfer operator with 

f l :  [ l /a ,  1] --* [1/cq 1/cd], f l ( z ) = z / e  

f2: [1/c~, 1] --, [g  1(1/c~2), 13, f2(z)  = g - l ( z / ~ )  

and wi ( z )=  (F)' (z), i=  1, 2. 
Since f~ is orientation reversing and f2 is orientation preserving 

(and consequently, w2 > 0, w~ <0,  on the appropriate intervals), we can 
conclude that the operator L has sinned. 

S t a n d i n g  Hypothesis .  Unless otherwise stated, we shall henceforth 
only consider transfer operators with weight lunctions w = F'. 

3. ZETA F U N C T I O N S  

We next try to understand the determinants d(z) in terms of the 
periodic points of F. This is the key idea in the work of Artuso et al. (1) 
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For  each n~>l  there are periodic orbits ~ =  {x, Fx,...,F'-~x} with 
(prime) F-period Ivl = n. We can associate an (unweighted) zeta function by 
the Euler product  expression 

fro(Z) = I~ (1 - zl*t) -1 

By a now s tandard  computa t ion ,  this complex function has a meromorph ic  
extension (o(Z) = 1/(1 - 2z). (2) 

D e f i n i t i o n .  For  an analytic weight function w: I t  w I2 ~ R we can 
define the (weighted) Ruelle zeti7 function by 

: (z )  = I ]  (1 .zl l) 

Fix i w(F'x) is the product  of the values of the weight function w h e r e a t =  i=0 
a round  the orbit  {x, Fx,..., F"-lx}.  

L e m m a  3. (i) ~(z) converges to an analytic function on a suf- 
ficiently small ne ighborhood  ]zl < e. 

(ii) ~(z) has a meromorph ic  extension to C. 

(iii) ~(z) = d(z, w/F')/d(z, w), where d(z,.) is the determinant  for the 
transfer opera to r  with the appropr ia te  weight function. 

These results can be derived f rom Ruelle's article, (13) a l though it is 
perhaps  a little easier to unders tand the ideas f rom Mayer ' s  later article (u) 
for the special case of the cont inued-fract ion t ransformation.  

By our "s tanding hypothesis"  we want  to take w=F',  and so, 
applying L e m m a  3 twice (with choices w = F '  and then w = 1) gives 

d(z, 1) 
~ ( z ) -  - -  (with w=F')  (3.1) 

d(z, f ' )  

and 

d(z, 1/F') 
~o(Z) -  (with w = 1) (3.2) 

d(z, 1) 

Thus, combining (3.1) and (3.2), we have 

d(z) = d(z, F ' )  = VI (1 - a t .  zM) �9 (1 - 2z) d(z, 1/F') (3.3) 

where a~ = (F~) ' (x). 
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Remark. Whereas the coefficients in d(z) are difficult to express 
directly, we can expand 1/~(z), using Lemma 3(i), as a power series whose 
terms are far more accessible. 

For the Feigenbaum tangent operator we have 

I ]  ( 1 - - a ~ z l ~ l ) = l - - z ( ~ + e 2 ) +  ... 

(because the fixed points 1, 1/e have weights c~ 2, e, respectively). 
By comparing the transfer operator with the weight function 1IF' with 

that with weight function [1/F'[ and recalling Lemmas 1 and 2(iii), we 
easily get that d(z, 1IF') has no zeros in Iz[ ~ 1. In particular, we have the 
following: 

P r o p o s i t i o n  1. The zeros for d(z) are the same as for 

G(z )=  d(z) - ] q  ( 1 - a ~ z M ) ( 1 - 2 z )  (3.4) 
d(z, 1/F') 

within the unit disc. 

Remark. We observe that the expansion of G(z) has a power series 
with real coefficients. 

4. ANALYZING THE SPECTRUM 

By Lemmas 4 and 2(iii), we know that the following two problems are 
equivalent: 

(i) Locating eigenvalues/~i of L of modulus greater than unity. 

(ii) Locating zeros z i=  1//~i of G(z) for [zl ~< 1. 

We concentrate on the second version of the problem, and then the 
corresponding spectral results come easily from this correspondence. 

4.1. Hyperbolicity and the Maximal Eigenvalue 

To show that there is only one zero in [zl ~< 1, we want to compare the 
two complex functions z~---~ G(z) and z~-~ 1 + clz. 

We can choose some n>~l and write G ( z ) = l + c l z + H ( z ) + K ( z ) ,  
where 

(i) H(z) = c2 z2 + c3 z3 + ... + cnz" is a polynomial. 

(ii) K(z)=Z~+=~,+I crz" is a tail of the series. 
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By (1.1) we have the est imate 
+ ~ +o~ CrOr(r I 1/2 

sup lK(z)l~< Z Icrl <" ~ ( l _ O ) . . . ( l _ O r )  - A .  (4.1) 
Iz l=l  r = n + l  r = n + l  

and clearly , ,2 A ~ =  O ( C  0 ), where the implied constant  can be explicitly 
computed.  

We recall the following fact f rom elementary complex analysis: If 
two functions f ,  g are analytic on a ne ighborhood  of the unit disc and 
i f ( z ) -  g(z)i < I f (z) l  wherever Lzi = 1, then f and g have the same number  
of zeros in the disc. 

We want  to apply this e lementary fact with the choices f ( z )  = 1 + ClZ 

and g(z )  = G(z)  [ and  consequently g(z)  - f ( z )  = H ( z )  + K(z)] .  

Proposition 2. If Ic11>1, then there exists n~>l ,  such that, 
providing, sup H = 1 [K(z)l ~ (ICll - 1 )/2, say, then G(z)  has exactly one zero 
in Iz[ ~< 1. 

Fur thermore ,  we can choose 

n = O 1/2, C 

where the implied constants  can be explicitly computed.  

R e m a r k .  (i) For  the Fe igenbaum tangent  operator ,  c~ = e 2 +  0~-2  
> 1 and the coefficients of polynomials  of the form H ( z )  are computed  in 

ref. 1. For  estir/aates relevant to 0, C > 0 ,  see refs. 6 and 10. 

(ii) Since the coefficients of G are real, the unique zero in Izl ~< 1 
must  lie on the real line (since complex zeros would appear  as conjugate  
pairs). 

4.2. Locating the Maximal Eigenvalue 

We can now see that  the approach  of Artuso et al. (~) to comput ing  6 
is both  r igorous and efficient. 

Let G, ( z )  = 1 + ClZ + . . .  + c , z  n be the t runcat ion  of the series for G(z)  
to n places. On  a disc of radius r > 0 we have that  [ ]G-G, lk  ~ = 0(C"0"2). 

Assume that  G(z)  has only one zero z o in [z[ < r and no zeros on the 
circle [z[ = r. For  sufficiently large n the same will be true of G, ,  and we 
denote the zero by zn. Clearly, 

zo:•  f  'tzt f  'o zl - -  Z "  d z  

so that  we can bound I z , - z o l  in terms of I I G - G ,  Iloo. 
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We can therefore conclude: 

P r o p o s i t i o n  3. If G(z) has a single zero Zo in ]zl ~< r, then this is 
approximated by zeros  zn for G,(z) with I z n - z o ]  = O(CnOn2), where the 
implied constants  can be explicitly computed.  
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